Administration of microRNA-210 promotes spinal cord regeneration in mice.

نویسندگان

  • Satoshi Ujigo
  • Naosuke Kamei
  • Hikmat Hadoush
  • Yuki Fujioka
  • Shigeru Miyaki
  • Tomoyuki Nakasa
  • Nobuhiro Tanaka
  • Kazuyoshi Nakanishi
  • Akiko Eguchi
  • Toru Sunagawa
  • Mitsuo Ochi
چکیده

STUDY DESIGN Experimental animal study of treatment of spinal cord injury (SCI). OBJECTIVE To investigate the therapeutic effects of administering microRNA-210 (miR-210) to promote angiogenesis in a mouse SCI model. SUMMARY OF BACKGROUND DATA Despite many previous studies regarding SCI, there is no established treatment in clinical practice. miRNAs have attracted immense attention because of their crucial role in human disease, and they have been proposed as potential new therapeutic targets for SCI. METHODS At specific times after administration, mice were analyzed by several methods to examine the distribution of miR-210, histological angiogenesis and neurogenesis, functional recovery from SCI, and the expression levels of target genes of miR-210. RESULTS After injection of miR-210 into the lesion of the injured spinal cord, expression of endogenous miR-210 increased until 6 days after injection. The administration of miR-210 promoted angiogenesis and astrogliosis, and improved functional recovery after SCI compared with the noninjected controls. Furthermore, the area made up of axons and myelin in the spinal cord tissues caudal to the injury site was larger in mice injected with miR-210 than those of the controls. Apoptotic cell death was lower in mice administered miR-210. After administration of miR-210, the expressions of protein-tyrosine phosphate 1B and ephrin-A3, both gene targets of miR-210, were downregulated at the protein level and protein-tyrosine phosphate 1B expression was also downregulated at the transcriptional level. CONCLUSION MiR-210 might contribute to spinal cord repair by promoting angiogenesis via the inhibition of protein-tyrosine phosphate 1B and ephrin-A3. LEVEL OF EVIDENCE N/A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury

Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....

متن کامل

Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury

Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide a...

متن کامل

The Effects of Testosterone on Oxidative Stress Markers in Mice with Spinal Cord Injuries

Objective Spinal cord injury (SCI) causes infertility in male patients through erectile dysfunction, ejaculatory dysfunction, semen and hormone abnormalities. Oxidative stress (OS) is involved in poor semen quality and subsequent infertility in males with SCI. The aim of this study is to examine the effects of SCI on the level of testosterone hormone. MaterialsAndMethods In this experimental st...

متن کامل

P-15: Effect of Testosterone on Antioxidant Biomarkers in Mice with Spinal Cord Injury

Background: Spinal cord injury (SCI) is a traumatic or nontraumatic injury that can leads to loss of functions such as feeling or mobility along with permanent and debilitating influences on the patient’s quality of life. Patients with SCI have weakened sexual function and a distinctive sperm profile described by normal to high sperm concentrations and unusually low sperm mobility. The reason o...

متن کامل

Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury.

Remodeling of cytoskeleton structures, such as microtubule assembly, is believed to be crucial for growth cone initiation and regrowth of injured axons. Autophagy plays important roles in maintaining cellular homoeostasis, and its dysfunction causes neuronal degeneration. The role of autophagy in axon regeneration after injury remains speculative. Here we demonstrate a role of autophagy in regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spine

دوره 39 14  شماره 

صفحات  -

تاریخ انتشار 2014